Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The recent detection of high-energy neutrinos by IceCube in the direction of the nearby Seyfert/starburst galaxy NGC 1068 implies that radio-quiet active galactic nuclei can accelerate cosmic-ray ions. Dedicated multimessenger analyses suggest that the interaction of these high-energy ions with ambient gas or photons happens in a region of the galaxy that is highly opaque for GeV–TeV gamma rays. Otherwise, the GeV–TeV emission would violate existing constraints provided by the Fermi Large Area Telescope (LAT) and the Major Atmospheric Gamma Imaging Cherenkov. The conditions of high optical depth are realized near the central supermassive black hole (SMBH). At the same time, the GeV emission detected by the Fermi LAT is likely related to the galaxy’s sustained star formation activity. In this work, we derive a 20 MeV–1 TeV spectrum of NGC 1068 using 14 yr of Fermi LAT observations. We find that the starburst hadronic component is responsible for NGC 1068's emission above ∼500 MeV. However, below this energy, an additional component is required. In the 20–500 MeV range, the Fermi LAT data are consistent with hadronic emission initiated by non-thermal ions interacting with gas or photons in the vicinity of the central SMBH. This highlights the importance of the MeV band to discover hidden cosmic-ray accelerators.more » « less
- 
            Abstract Recent observations of high-energy neutrinos by IceCube and gamma rays by the Fermi Large Area Telescope (LAT) and the MAGIC telescope have suggested that neutrinos are produced in gamma-ray opaque environments in the vicinity of supermassive black holes. In this work, we present 20 MeV–1 TeV spectra of three Seyfert galaxies whose nuclei are predicted to be active in neutrinos, NGC 4151, NGC 4945, and the Circinus galaxy, using 14.4 yr of Fermi LAT data. In particular, we find evidence of sub-GeV excess emission that can be attributed to gamma rays from NGC 4945, as was also seen in NGC 1068. These spectral features are consistent with predictions of the magnetically powered corona model, and we argue that NGC 4945 is among the brightest neutrino active galaxies detectable for KM3Net and Baikal-GVD. On the other hand, in contrast to other reported results, we do not detect gamma rays from NGC 4151, which constrains neutrino emission from the accretion shock model. Future neutrino detectors such as IceCube-Gen2 and MeV gamma-ray telescopes such as AMEGO-X will be crucial for discriminating among the theoretical models.more » « less
- 
            Abstract The fourth Fermi Large Area Telescope catalog (4FGL) contains 5064 γ -ray sources detected at high significance, but 26% of them still lack associations at other wavelengths. The SPT-SZ survey, conducted between 2008 and 2011 with the South Pole Telescope (SPT), covers 2500 deg 2 of the southern sky in three millimeter-wavelength (mm) bands and was used to construct a catalog of nearly 5000 emissive sources. In this study, we introduce a new cross-matching scheme to search for multiwavelength counterparts of extragalactic γ -ray sources using a mm catalog. We apply a Poissonian probability to evaluate the rate of spurious false associations and compare the multiwavelength associations from the radio, mm, near-infrared, and X-ray with 4FGL γ -ray sources. In the SPT-SZ survey field, 85% of 4FGL sources are associated with mm counterparts. These mm sources include 94% of previously associated 4FGL sources and 56% of previously unassociated 4FGL sources. The latter group contains 40 4FGL sources for which SPT has provided the first identified counterparts. Nearly all of the SPT-associated 4FGL sources can be described as flat-spectrum radio quasars or blazars. We find that the mm band is the most efficient wavelength for detecting γ -ray blazars when considering both completeness and purity. We also demonstrate that the mm band correlates better to the γ -ray band than the radio or X-ray bands. With the next generation of CMB experiments, this technique can be extended to greater sensitivities and more sky area to further complete the identifications of the remaining unknown γ -ray blazars.more » « less
- 
            To answer NASA’s call for a sensitive X-ray observatory in the 2030s, we present the High Energy X-ray Probe (HEX-P) mission concept. HEX-P is designed to provide the required capabilities to explore current scientific questions and make new discoveries with a broadband X-ray observatory that simultaneously measures sources from 0.2 to 80 keV. HEX-P’s main scientific goals include: 1) understand the growth of supermassive black holes and how they drive galaxy evolution; 2) explore the lower mass populations of white dwarfs, neutron stars, and stellar-mass black holes in the nearby universe; 3) explain the physics of the mysterious corona, the luminous plasma close to the central engine of accreting compact objects that dominates cosmic X-ray emission; and 4) find the sources of the highest energy particles in the Galaxy. These goals motivate a sensitive, broadband X-ray observatory with imaging, spectroscopic, and timing capabilities, ensuring a versatile platform to serve a broad General Observer (GO) and Guest Investigator (GI) community. In this paper, we present an overview of these mission goals, which have been extensively discussed in a collection of more than a dozen papers that are part of this Research Topic volume. The proposed investigations will address key questions in all three science themes highlighted by Astro2020, including their associated priority areas. HEX-P will extend the capabilities of the most sensitive low- and high-energy X-ray satellites currently in orbit and will complement existing and planned high-energy, time-domain, and multi-messenger facilities in the next decade.more » « lessFree, publicly-accessible full text available November 25, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
